Challenges in the optimization of 3D printing and robocasting processes using zirconia based pastes

2018 NanoMatLab/Biomat Meeting

NanoMatLab

Nanostructured Materials and Nanotechnologies Laboratory

Robocasting - Introduction

• Layer-by-layer deposition of ceramic slurries (paste) through a nozzle (extrusion).

- Computer numerical control over nozzle position coordinates and piston movement.
- Nozzle diameter ranging from 0.03mm to 2mm.

Robocasting – Products

[1]

Robocasting - Slurries

- Slurries must be pseudoplastic to flow through the nozzle.
- Slurry compositions are kept close to the dilatant ratio.

(38 v/o water)

2], [4]

- Dilatant mass maintains structural integrity after minimal drying time.
- Heated bed speeds up the pseudoplastic to dilatant transition.

Robocasting - Slurries

- Slurries of high solid fraction, usually 50-65 vol.% ceramic powder.
- 35-50 vol.% volatile solvent (usually water).
- Higher ceramic loadings decrease sintering shrinkage and cracking.
- Highly loaded slurries are prone to agglomeration, that can cause nozzle clogging during extrusion.
- Tested slurries:

Slurry designation	Zirconia powder loading	Powder/dispersant weight ratio
Х	High	High
Y	Medium	Low
Z	Low	Low

3D Printer

Commercial open source 3D printer "Lulzbot MINI"

Printing parameters

🖾 Infill		•
Infill Density	100	%
Infill Line Distance	0.25	mm
Infill Pattern	Lines	-
Infill Line Directions	[]	
🕐 Speed		•
Print Speed	10	mm/s
Infill Speed	10	mm/s
Wall Speed	5.0	mm/s
Outer Wall Speed	5	mm/s
Inner Wall Speed	5	mm/s
Top/Bottom Speed	5.0	mm/s
Travel Speed	15	mm/s

Build Plate Temperature	8	35	°C
Part Removal Temperature		35	°C
Keep Heating		~	
Build Plate Temperature Initial Layer	8	35	°C
Diameter		2.85	mm
Flow		115	%
Initial Layer Flow Rate	8	100	%
Enable Retraction		~	
Retract at Layer Change			
Retraction Distance		1.5	mm
Retraction Speed		10	mm/s

Printing results

Slurry	Powder loading (wt%)	Dispersant/powder Weight ratio (%)
X (3D printed)	High	High
Y (3D printed)	Medium	Low
Z (Slip cast)	Low	Low

Printing results

Slurry	Powder loading (wt%)	Dispersant/powder Weight ratio (%)
X (3D printed)	High	High
Y (3D printed)	Medium	Low
Z (Slip cast)	Low	Low

References

[1] E. Feilden, Additive Manufacturing of Ceramics and Ceramic Composites via Robocasting, 2017.

[2] J. Cesarano, B.H. King, H.B. Denham, J. Cesarano III, H.B. Denham, Recent developments in robocasting of ceramics and multimaterial deposition, Solid Free. Fabr. Proceedings, August, 1998. (1998) 8 p. : digital, PDF file.

[3] E. Peng, X. Wei, U. Garbe, D. Yu, B. Edouard, A. Liu, J. Ding, Robocasting of dense yttria-stabilized zirconia structures, J. Mater. Sci. 53 (2018) 247–273. doi:10.1007/s10853-017-1491-x.

[4] W.C. Jr, L. Rueschhoff, P.R. Trice, P.J. Youngblood, Additive Manufacturing of Boron Carbide via Robocasting of Aqueous Ceramic Suspensions, 1–16.